Project systems theory — Solutions
Final exam 2018-2019, Thursday 24 January 2019, 9:00 — 12:00

Problem 1 (244 + 9 = 15 points)

Consider the nonlinear system

x'l _ To — 2.7311‘2 Y Y (1)
o —ry 224 ul|’ Y 12

with state z = [z 22T, input v € R, and output y € R.
(a) Below, we will frequently use the shorthand notation

o — 21’11’2
—x1 + x% + m% +u

flz,u) = ) h(z) = 2z 22, (2)
| |

such that the dynamics (1) can be written as

i‘:f(.%‘,u), y:h(m>7 (3)

(2]

is an equilibrium point for u(t) = 0, ¢ > 0, compute f(Z,0) to obtain

To show that

s = ol ®)

Hence, Z is an equilibrium point (for u(t) =a =0, ¢ > 0).

(b) Equilibrium points Z corresponding to the constant input u(t) = 4@ = 0 are obtained as
solutions of

0=f(z,u). (6)
Substituting @ = 0 and using the definition (3), we obtain

To — 22129

0= sz i@+a2+0] ()

where 7 = [Z; T2 |". The first element yields
T — 23179 = T2(1 — 271) =0, (8)
such that £ =0 or 7 = % Substituting Zo = 0 in the second element of (7), we get
— T+ T2 +04+0=2(z; — 1) =0, (9)

such that this leads to the equilibrium points

[i) o[l



Note that the second equilibrium point was already given in (4). Similarly, substituting

Z1 = % in the second element of (7) leads to

()4 +o=—1+zi=0 (11)

such that the final two equilibrium points are given as

S|

In order to find the linearized dynamics around the equilibrium point given by Z and 4,
define the perturbations

T=x-1, t=u—1a (13)
Then, the linearized dynamics is given as
- of .. of _ ..
Y9 = 14
i) = SL@wma) + S ), (14
after which it can be concluded from (2) that
8f o —21‘2 1-— 2.’L‘1
9B = [—1+2x1 200 | (15)
Evaluation of the result at (Z,u) gives, after substitution of (4),
of ,_ _ 0 -1
a—x(x,u) = [1 0 } . (16)
Similarly, it is easy to see that
of . - 0
R (17)
Finally, denoting the nominal output ¥ as
y=nh(z) =0, (18)
and defining the perturbation
we can write the linearized output equation as
h
i) = Oz, m)a() (20)
Here, by the definition (2), we have
oh
and
oh,_ _
%(:r,u): [02] (22)



Problem 2 (20 points)

Consider the family of polynomials
PA) = {N° + 020 + aX+ 6 | 2a < 05 < 3a, a < 0y < 4da} (23)

with a a real number.

By Kharitonov’s theorem, the set of polynomials (23) is stable if and only if the four polynomials

p1(\) = A3 +3a)\? +a\ +a, (24)
p2(A) = A3 +2a)\? + a) + 4a, (25)
p3(A\) = A% 4+ 2a)? 4 a) + 4a, (26)
pa(A) = A* + 3aX\? + a) +a, (27)

are all stable. It is clear that pi(A) = ps(N) and p2(A) = p3(N), such that stability of only two
distinct polynomials has to be determined.

First, stability of p1 (A) = pa(A) is studied using the Routh-Hurwitz test. To this end, consider
the following table:

A3 A2 Al A0
3ax 1 3a a a
1x 3a a
9a> a(3a—1)  3d? (result of step 1)
(3a —1)x 9 3a—1 3a (after division by a)
9a x 3—a

(3a — 1)% 3a(3a — 1) (result of step 2)
3a—1 3a (after division by 3a — 1)

Recall that a necessary condition for stability of a polynomial is that all coefficients have the
same sign. For the original polynomial p;, this gives that a > 0. Applying the same reasoning to
the polynomial obtained after step 1, we get 3a — 1 > 0, i.e., a > % We now have a > %, which
enables the division by a after step 1 as well as division by 3a — 1 after step 2. Now, under this
condition, it is easily checked that the final polynomial (3a — 1)\ + 3a is stable. Thus, we have

that p1(A) = pa(N) is stable if and only if

a> (28)

(M

Following the same approach, the Routh-Hurwitz table of pa(\) = p3(A) is given as:

A3 A2 Al 0
2ax 1 2a a 4a
1x 2a 4a
4a a(2a—4) 8a?  (result of step 1)
(a —2)x 2a a—2 4a (after division by 2a)
2ax a—2

(a —2)? 4a(a —2) (result of step 2)
a—2 4a (after division by 3 — a)

As before, the original polynomial pa(A) = ps(A) gives that a > 0 is necessary for stability,
whereas the result of step 2 gives a > 2. Under the latter condition, it can be shown that the final
polynomial (a — 2)A + 4a is stable. Hence, p2(A) = p3(A) is stable if and only if

a>2. (29)



Combining the results (28) and (29) gives, through Kharitonov’s theorem, that the family of
polynomials P(\) is stable if and only if

a> 2. (30)



Problem 3 (6 + 4 = 10 points)

Consider the linear system

-2 8 1 0
)= 0 1 2|a@t)+ [1|u), y(t)=[1 -2 1] (). (31)
0 —21 2

(a) The unobservable subspace is given as

C 1 =21
ker | CA | =ker | -2 4 -2]. (32)
CA? 4 -8 4

As all rows are scaled version of the first row, it is clear that the unobservable subspace has
dimension 3 — 1 = 2. A basis is given by the vectors

2 0
1], 1], (33)
0 2
such that
2 0
N =spanq |1|,|1 (34)
0 2
(b) By definition of the unobservable subspace, we have
y(t)=0, t>0. (35)



Problem 4 (4+4+4+ 12+ 6 = 30 points)

Consider the linear system
z(t) + Az(t) + Bu(t), (36)

with state z(t) € R3, input u(t) € R, and where

30 0 0
A=|03-5|, B=|1]. (37)
01-3 2

(a) Due to the block-diagonal structure of A, its spectrum o(A) is given by

a(A)za(—S)Ua(ﬁ _?)D (38)

Computation of the characteristic polynomial of the matrix in the lower right block gives
35\ _|A=3 5 |_, 2

det()\l—{l _3]>—‘ 1 /\+3'—(>\ A+3)+5=A—4, (39)

after which solving A2 — 4 = 0 yields

o([35]) =22 (40)

such that the total spectrum is
o(A) ={-3,-2,2}. (41)

As there exist eigenvalues with positive real part, the system (36) is not (asymptotically)
stable.

(b) To verify controllability, compute

000
[BAB A?°B]=|1-74], (42)
2 -5 8

whose rank is immediately observed to equal 2. Hence, as the state-space dimension of
the system (36) equals 3, the system is not controllable. Note that this could have been
concluded immediately from the block-diagonal structure of A in (37) and the observation
that the corresponding entry in B equals zero.

(c) For the system to be stabilizable, all unstable eigenvalues of A need to be controllable. From
(a), we recall that o(A) = {—3,—2,2}, such that 2 is the only unstable eigenvalue.

Denote A = 2 and consider

A+3 0 0 |0 5 0 0]0
[)\I—AB}: 0 A=3 5 |1|=]10-15]|1]. (43)
0 -1 X+3]2 0—-15|2
It is clear that
rank [\ — A B| =3, (44)

which equals the state-space dimension. Thus, the system (36) is stabilizable.



(d) Note that the block-diagonal structure of A and the structure of B in (37) enables us to
write

R

with

A:ﬁjg}, B:M. (46)

10
r-[12] -
with T nonsingular yields
1 |1 0 -30 10 -3 0
T AT_{OTJ [ 0 A} [OT}_[O TlT}’ (48)
15, |10 0| 0
o=[orh] (5] [+ @

Now, the problem becomes to find a nonsingular matrix T such that
T-VAT — {_0 ! } T3 = m (50)
as —aq 1
To do so, compute the characteristic polynomial of A in (46) as
Az(N\) =det(M\ — A) = \? — 4, (51)
where the result (39) is recalled. After denoting
a; =0, as = —4, (52)
the characteristic polynomial can be written as
Az(N) =N+ a) + as. (53)

Now, to construct the transformation T, consider

w=5=,], (54)

@ =AB+aB= {:HJFO (55)
to form

T=a %][:g;} (56)

By construction, this matrix satisfies (50) with a; and as as in (52). This can easily be
verified after computing its inverse as

;] . (57)



(e) Following a similar partitioning as before, we can write
F=[0F], (58)

The matrices A + BF' and

T YA+BF)T =T 'AT + T"'BFT (59)

have the same eigenvalues by similarity transformation. Specifically, using the block-diagonal
forms (46) and (58), we obtain

-3 0

—1 _ B L _ o
T A+ BRT = " po1 g7 4 71 BT | (60)

Note that this feedback leaves the eigenvalue —3 untouched. This is no problem, as —3 is
within the desired spectrum of the closed-loop system. Thus, what remains is to find F' such
that

o(I"'AT +T7'BFT) = {-1,-1}. (61)
To this end, denote
F=[f fi]=FT, (62)
and compute
T-1AT + T-BFT — { 0 ] . (63)
fa—ax fi—a

Due to its companion form, the characteristic equation of the matrix can immediately be
given as

Ap-1arpryr(N) =2+ (a1 — fi)A + (a2 — fo). (64)

As we would like the closed-loop system matrix to have eigenvalues at —1, —1, the desired
characteristic polynomial is

pA)=A+1)2 =X\ +22+ 1. (65)
After equating (64) and (65) and the substitution of the values for a; and ay in (52), we find

fi=a1—2=0-2=-2, (66)
fo=ay—1=—-4—1=—5. (67)

To find the feedback matrix F' (in the original coordinates), compute

a1 1 —21]_,

F=FT'=§[-5-2]| =35[20-19], (68)
such that the full feedback matrix F = [0 F'] is given as

F=1[020-19]. (69)



Problem 5 (15 points)

Consider the linear system
z(t) = Az(t) + Bu(t), (70)
with state z(t) € R™ and input u(t) € R™ for m = 1.
Let w; # 0 and wy # 0 be two linearly independent eigenvalues of AT for the eigenvalue
A € o(A) (recall that o(A) = o(AT)). Equivalently, they are left eigenvectors for A, i.e.,
wi A= \w], wy A= \wy . (71)
Now, let
w = aiwy + aaws, (72)

with a1, as € R be a linear combination of the left eigenvectors. Then,

w' [A— X B] = [w"(A-X) wTB]. (73)
Note that
wl (A=) =0 (74)
due to (71). Moreover,
w'B = oy (wy B) + az(w; B), (75)

where it is noted that w§ B and w} B are scalars as m = 1. Thus, there exists a; and ay such
that wT B = 0. In this case,

w' [A— )X B] =0, (76)
implying that the matrix
[A - B} (77)

does not have full row rank (i.e., does not have rank n) and the system (70) is not controllable as
a result of the Hautus test.

(10 points free)



