
Project systems theory – Solutions
Final exam 2018–2019, Thursday 24 January 2019, 9:00 – 12:00

Problem 1 (2 + 4 + 9 = 15 points)

Consider the nonlinear system[
ẋ1

ẋ2

]
=

[
x2 − 2x1x2

−x1 + x2
1 + x2

2 + u

]
, y = 2x1x2 (1)

with state x = [ x1 x2 ]T, input u ∈ R, and output y ∈ R.

(a) Below, we will frequently use the shorthand notation

f(x, u) =

[
x2 − 2x1x2

−x1 + x2
1 + x2

2 + u

]
, h(x) = 2x1x2, (2)

such that the dynamics (1) can be written as

ẋ = f(x, u), y = h(x), (3)

To show that

x̄ =

[
x̄1

x̄2

]
=

[
1
0

]
(4)

is an equilibrium point for u(t) = 0, t ≥ 0, compute f(x̄, 0) to obtain

f(x̄, 0) =

[
0
0

]
. (5)

Hence, x̄ is an equilibrium point (for u(t) = ū = 0, t ≥ 0).

(b) Equilibrium points x̄ corresponding to the constant input u(t) = ū = 0 are obtained as
solutions of

0 = f(x̄, ū). (6)

Substituting ū = 0 and using the definition (3), we obtain

0 =

[
x̄2 − 2x̄1x̄2

−x̄1 + x̄2
1 + x̄2

2 + 0

]
, (7)

where x̄ = [ x̄1 x̄2 ]T. The first element yields

x̄2 − 2x̄1x̄2 = x̄2(1− 2x̄1) = 0, (8)

such that x̄2 = 0 or x̄1 = 1
2 . Substituting x̄2 = 0 in the second element of (7), we get

−x̄1 + x̄2
1 + 0 + 0 = x̄1(x̄1 − 1) = 0, (9)

such that this leads to the equilibrium points

x̄ =

[
0
0

]
, x̄ =

[
1
0

]
. (10)
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Note that the second equilibrium point was already given in (4). Similarly, substituting
x̄1 = 1

2 in the second element of (7) leads to

− 1
2 +

(
1
2

)2
+ x̄2

2 + 0 = − 1
4 + x̄2

2 = 0 (11)

such that the final two equilibrium points are given as

x̄ =

[
1
2
1
2

]
, x̄ =

[
1
2
− 1

2

]
. (12)

(c) In order to find the linearized dynamics around the equilibrium point given by x̄ and ū,
define the perturbations

x̃ = x− x̄, ũ = u− ū. (13)

Then, the linearized dynamics is given as

˙̃x(t) =
∂f

∂x
(x̄, ū)x̃(t) +

∂f

∂u
(x̄, ū)ũ(t), (14)

after which it can be concluded from (2) that

∂f

∂x
(x, u) =

[
−2x2 1− 2x1

−1 + 2x1 2x2

]
. (15)

Evaluation of the result at (x̄, ū) gives, after substitution of (4),

∂f

∂x
(x̄, ū) =

[
0 −1
1 0

]
. (16)

Similarly, it is easy to see that

∂f

∂u
(x̄, ū) =

[
0
1

]
. (17)

Finally, denoting the nominal output ȳ as

ȳ = h(x̄) = 0, (18)

and defining the perturbation

ỹ = y − ȳ, (19)

we can write the linearized output equation as

ỹ(t) =
∂h

∂x
(x̄, ū)x̃(t). (20)

Here, by the definition (2), we have

∂h

∂x
(x, u) =

[
2x2 2x1

]
(21)

and

∂h

∂x
(x̄, ū) =

[
0 2

]
. (22)
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Problem 2 (20 points)

Consider the family of polynomials

P(λ) =
{
λ3 + θ2λ

2 + aλ+ θ0

∣∣ 2a ≤ θ2 ≤ 3a, a ≤ θ0 ≤ 4a
}

(23)

with a a real number.

By Kharitonov’s theorem, the set of polynomials (23) is stable if and only if the four polynomials

p1(λ) = λ3 + 3aλ2 + aλ+ a, (24)

p2(λ) = λ3 + 2aλ2 + aλ+ 4a, (25)

p3(λ) = λ3 + 2aλ2 + aλ+ 4a, (26)

p4(λ) = λ3 + 3aλ2 + aλ+ a, (27)

are all stable. It is clear that p1(λ) = p4(λ) and p2(λ) = p3(λ), such that stability of only two
distinct polynomials has to be determined.

First, stability of p1(λ) = p4(λ) is studied using the Routh-Hurwitz test. To this end, consider
the following table:

λ3 λ2 λ1 λ0

3a× 1 3a a a
1× 3a a

9a2 a(3a− 1) 3a2 (result of step 1)
(3a− 1)× 9a 3a− 1 3a (after division by a)

9a× 3− a
(3a− 1)2 3a(3a− 1) (result of step 2)

3a− 1 3a (after division by 3a− 1)

Recall that a necessary condition for stability of a polynomial is that all coefficients have the
same sign. For the original polynomial p1, this gives that a > 0. Applying the same reasoning to
the polynomial obtained after step 1, we get 3a − 1 > 0, i.e., a > 1

3 . We now have a > 1
3 , which

enables the division by a after step 1 as well as division by 3a − 1 after step 2. Now, under this
condition, it is easily checked that the final polynomial (3a − 1)λ + 3a is stable. Thus, we have
that p1(λ) = p4(λ) is stable if and only if

a > 1
3 . (28)

Following the same approach, the Routh-Hurwitz table of p2(λ) = p3(λ) is given as:

λ3 λ2 λ1 λ0

2a× 1 2a a 4a
1× 2a 4a

4a2 a(2a− 4) 8a2 (result of step 1)
(a− 2)× 2a a− 2 4a (after division by 2a)

2a× a− 2
(a− 2)2 4a(a− 2) (result of step 2)
a− 2 4a (after division by 3− a)

As before, the original polynomial p2(λ) = p3(λ) gives that a > 0 is necessary for stability,
whereas the result of step 2 gives a > 2. Under the latter condition, it can be shown that the final
polynomial (a− 2)λ+ 4a is stable. Hence, p2(λ) = p3(λ) is stable if and only if

a > 2. (29)
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Combining the results (28) and (29) gives, through Kharitonov’s theorem, that the family of
polynomials P (λ) is stable if and only if

a > 2. (30)
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Problem 3 (6 + 4 = 10 points)

Consider the linear system

ẋ(t) =

−2 8 1
0 1 2
0 −2 1

x(t) +

 0
1
2

u(t), y(t) =
[

1 −2 1
]
x(t). (31)

(a) The unobservable subspace is given as

ker

 C
CA
CA2

 = ker

 1 −2 1
−2 4 −2
4 −8 4

 . (32)

As all rows are scaled version of the first row, it is clear that the unobservable subspace has
dimension 3− 1 = 2. A basis is given by the vectors 2

1
0

 ,
 0

1
2

 , (33)

such that

N = span


 2

1
0

 ,
 0

1
2

 . (34)

(b) By definition of the unobservable subspace, we have

y(t) = 0, t ≥ 0. (35)
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Problem 4 (4 + 4 + 4 + 12 + 6 = 30 points)

Consider the linear system

ẋ(t) +Ax(t) +Bu(t), (36)

with state x(t) ∈ R3, input u(t) ∈ R, and where

A =

−3 0 0
0 3 −5
0 1 −3

 , B =

 0
1
2

 . (37)

(a) Due to the block-diagonal structure of A, its spectrum σ(A) is given by

σ(A) = σ(−3) ∪ σ
([

3 −5
1 −3

])
. (38)

Computation of the characteristic polynomial of the matrix in the lower right block gives

det

(
λI −

[
3 −5
1 −3

])
=

∣∣∣∣ λ− 3 5
−1 λ+ 3

∣∣∣∣ = (λ− 3)(λ+ 3) + 5 = λ2 − 4, (39)

after which solving λ2 − 4 = 0 yields

σ

([
3 −5
1 −3

])
= {−2, 2}, (40)

such that the total spectrum is

σ(A) = {−3,−2, 2}. (41)

As there exist eigenvalues with positive real part, the system (36) is not (asymptotically)
stable.

(b) To verify controllability, compute

[
B AB A2B

]
=

 0 0 0
1 −7 4
2 −5 8

 , (42)

whose rank is immediately observed to equal 2. Hence, as the state-space dimension of
the system (36) equals 3, the system is not controllable. Note that this could have been
concluded immediately from the block-diagonal structure of A in (37) and the observation
that the corresponding entry in B equals zero.

(c) For the system to be stabilizable, all unstable eigenvalues of A need to be controllable. From
(a), we recall that σ(A) = {−3,−2, 2}, such that 2 is the only unstable eigenvalue.

Denote λ = 2 and consider

[
λI −A B

]
=

 λ+ 3 0 0 0
0 λ− 3 5 1
0 −1 λ+ 3 2

 =

 5 0 0 0
0 −1 5 1
0 −1 5 2

 . (43)

It is clear that

rank
[
λI −A B

]
= 3, (44)

which equals the state-space dimension. Thus, the system (36) is stabilizable.
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(d) Note that the block-diagonal structure of A and the structure of B in (37) enables us to
write

A =

[
−3 0
0 Ā

]
, B =

[
0
B̄

]
, (45)

with

Ā =

[
3 −5
1 −3

]
, B̄ =

[
1
2

]
. (46)

Then, a transformation of the form

T =

[
1 0
0 T̄

]
(47)

with T̄ nonsingular yields

T−1AT =

[
1 0
0 T̄−1

] [
−3 0
0 Ā

] [
1 0
0 T̄

]
=

[
−3 0
0 T̄−1ĀT̄

]
, (48)

T−1B =

[
1 0
0 T̄−1

] [
0
B̄

]
=

[
0

T̄−1B̄

]
. (49)

Now, the problem becomes to find a nonsingular matrix T̄ such that

T̄−1ĀT̄ =

[
0 1
−a2 −a1

]
, T̄−1B̄ =

[
0
1

]
. (50)

To do so, compute the characteristic polynomial of Ā in (46) as

∆Ā(λ) = det(λI − Ā) = λ2 − 4, (51)

where the result (39) is recalled. After denoting

a1 = 0, a2 = −4, (52)

the characteristic polynomial can be written as

∆Ā(λ) = λ2 + a1λ+ a2. (53)

Now, to construct the transformation T̄ , consider

q2 = B̄ =

[
1
2

]
, (54)

q1 = ĀB̄ + a1B̄ =

[
−7
−5

]
+ 0 (55)

to form

T̄ =
[
q1 q2

]
=

[
−7 1
−5 2

]
. (56)

By construction, this matrix satisfies (50) with a1 and a2 as in (52). This can easily be
verified after computing its inverse as

T̄−1 = 1
9

[
−2 1
−5 7

]
. (57)
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(e) Following a similar partitioning as before, we can write

F =
[

0 F̄
]
, (58)

with F̄ = [ f2 f1 ].

The matrices A+BF and

T−1(A+BF )T = T−1AT + T−1BFT (59)

have the same eigenvalues by similarity transformation. Specifically, using the block-diagonal
forms (46) and (58), we obtain

T−1(A+BF )T =

[
−3 0
0 T̄−1ĀT̄ + T̄−1B̄F̄ T̄

]
. (60)

Note that this feedback leaves the eigenvalue −3 untouched. This is no problem, as −3 is
within the desired spectrum of the closed-loop system. Thus, what remains is to find F̄ such
that

σ
(
T̄−1ĀT̄ + T̄−1B̄F̄ T̄

)
= {−1,−1}. (61)

To this end, denote

F̃ =
[
f̃2 f̃1

]
= F̄ T̄ , (62)

and compute

T̄−1ĀT̄ + T̄−1B̄F̄ T̄ =

[
0 1

f̃2 − a2 f̃1 − a1

]
. (63)

Due to its companion form, the characteristic equation of the matrix can immediately be
given as

∆T̄−1(Ā+B̄F̄ )T̄ (λ) = λ2 + (a1 − f̃1)λ+ (a2 − f̃2). (64)

As we would like the closed-loop system matrix to have eigenvalues at −1, −1, the desired
characteristic polynomial is

p(λ) = (λ+ 1)2 = λ2 + 2λ+ 1. (65)

After equating (64) and (65) and the substitution of the values for a1 and a2 in (52), we find

f̃1 = a1 − 2 = 0− 2 = −2, (66)

f̃2 = a2 − 1 = −4− 1 = −5. (67)

To find the feedback matrix F̄ (in the original coordinates), compute

F̄ = F̃ T̄−1 = 1
9

[
−5 −2

] [−2 1
−5 7

]
= 1

9

[
20 −19

]
, (68)

such that the full feedback matrix F = [ 0 F̄ ] is given as

F = 1
9

[
0 20 −19

]
. (69)
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Problem 5 (15 points)

Consider the linear system

ẋ(t) = Ax(t) +Bu(t), (70)

with state x(t) ∈ Rn and input u(t) ∈ Rm for m = 1.
Let w1 6= 0 and w2 6= 0 be two linearly independent eigenvalues of AT for the eigenvalue

λ ∈ σ(A) (recall that σ(A) = σ(AT)). Equivalently, they are left eigenvectors for A, i.e.,

wT
1 A = λwT

1 , wT
2 A = λwT

2 . (71)

Now, let

w = α1w1 + α2w2, (72)

with α1, α2 ∈ R be a linear combination of the left eigenvectors. Then,

wT
[
A− λI B

]
=
[
wT(A− λI) wTB

]
. (73)

Note that

wT(A− λI) = 0 (74)

due to (71). Moreover,

wTB = α1(wT
1 B) + α2(wT

2 B), (75)

where it is noted that wT
1 B and wT

2 B are scalars as m = 1. Thus, there exists α1 and α2 such
that wTB = 0. In this case,

wT
[
A− λI B

]
= 0, (76)

implying that the matrix [
A− λI B

]
(77)

does not have full row rank (i.e., does not have rank n) and the system (70) is not controllable as
a result of the Hautus test.

(10 points free)
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