Project systems theory - Solutions

Final exam 2018-2019, Thursday 24 January 2019, 9:00-12:00

Problem 1

Consider the nonlinear system

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{1}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2}-2 x_{1} x_{2} \\
-x_{1}+x_{1}^{2}+x_{2}^{2}+u
\end{array}\right], \quad y=2 x_{1} x_{2}
$$

with state $x=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{\mathrm{T}}$, input $u \in \mathbb{R}$, and output $y \in \mathbb{R}$.
(a) Below, we will frequently use the shorthand notation

$$
f(x, u)=\left[\begin{array}{c}
x_{2}-2 x_{1} x_{2} \tag{2}\\
-x_{1}+x_{1}^{2}+x_{2}^{2}+u
\end{array}\right], \quad h(x)=2 x_{1} x_{2}
$$

such that the dynamics (1) can be written as

$$
\begin{equation*}
\dot{x}=f(x, u), \quad y=h(x) \tag{3}
\end{equation*}
$$

To show that

$$
\bar{x}=\left[\begin{array}{l}
\bar{x}_{1} \tag{4}\\
\bar{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

is an equilibrium point for $u(t)=0, t \geq 0$, compute $f(\bar{x}, 0)$ to obtain

$$
f(\bar{x}, 0)=\left[\begin{array}{l}
0 \tag{5}\\
0
\end{array}\right] .
$$

Hence, \bar{x} is an equilibrium point (for $u(t)=\bar{u}=0, t \geq 0$).
(b) Equilibrium points \bar{x} corresponding to the constant input $u(t)=\bar{u}=0$ are obtained as solutions of

$$
\begin{equation*}
0=f(\bar{x}, \bar{u}) \tag{6}
\end{equation*}
$$

Substituting $\bar{u}=0$ and using the definition (3), we obtain

$$
0=\left[\begin{array}{c}
\bar{x}_{2}-2 \bar{x}_{1} \bar{x}_{2} \tag{7}\\
-\bar{x}_{1}+\bar{x}_{1}^{2}+\bar{x}_{2}^{2}+0
\end{array}\right],
$$

where $\bar{x}=\left[\begin{array}{ll}\bar{x}_{1} & \bar{x}_{2}\end{array}\right]^{\mathrm{T}}$. The first element yields

$$
\begin{equation*}
\bar{x}_{2}-2 \bar{x}_{1} \bar{x}_{2}=\bar{x}_{2}\left(1-2 \bar{x}_{1}\right)=0 \tag{8}
\end{equation*}
$$

such that $\bar{x}_{2}=0$ or $\bar{x}_{1}=\frac{1}{2}$. Substituting $\bar{x}_{2}=0$ in the second element of (7), we get

$$
\begin{equation*}
-\bar{x}_{1}+\bar{x}_{1}^{2}+0+0=\bar{x}_{1}\left(\bar{x}_{1}-1\right)=0 \tag{9}
\end{equation*}
$$

such that this leads to the equilibrium points

$$
\bar{x}=\left[\begin{array}{l}
0 \tag{10}\\
0
\end{array}\right], \quad \bar{x}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

Note that the second equilibrium point was already given in (4). Similarly, substituting $\bar{x}_{1}=\frac{1}{2}$ in the second element of (7) leads to

$$
\begin{equation*}
-\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\bar{x}_{2}^{2}+0=-\frac{1}{4}+\bar{x}_{2}^{2}=0 \tag{11}
\end{equation*}
$$

such that the final two equilibrium points are given as

$$
\bar{x}=\left[\begin{array}{c}
\frac{1}{2} \tag{12}\\
\frac{1}{2}
\end{array}\right], \quad \bar{x}=\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right] .
$$

(c) In order to find the linearized dynamics around the equilibrium point given by \bar{x} and \bar{u}, define the perturbations

$$
\begin{equation*}
\tilde{x}=x-\bar{x}, \quad \tilde{u}=u-\bar{u} \tag{13}
\end{equation*}
$$

Then, the linearized dynamics is given as

$$
\begin{equation*}
\dot{\tilde{x}}(t)=\frac{\partial f}{\partial x}(\bar{x}, \bar{u}) \tilde{x}(t)+\frac{\partial f}{\partial u}(\bar{x}, \bar{u}) \tilde{u}(t), \tag{14}
\end{equation*}
$$

after which it can be concluded from (2) that

$$
\frac{\partial f}{\partial x}(x, u)=\left[\begin{array}{cc}
-2 x_{2} & 1-2 x_{1} \tag{15}\\
-1+2 x_{1} & 2 x_{2}
\end{array}\right] .
$$

Evaluation of the result at (\bar{x}, \bar{u}) gives, after substitution of (4),

$$
\frac{\partial f}{\partial x}(\bar{x}, \bar{u})=\left[\begin{array}{cc}
0 & -1 \tag{16}\\
1 & 0
\end{array}\right]
$$

Similarly, it is easy to see that

$$
\frac{\partial f}{\partial u}(\bar{x}, \bar{u})=\left[\begin{array}{l}
0 \tag{17}\\
1
\end{array}\right] .
$$

Finally, denoting the nominal output \bar{y} as

$$
\begin{equation*}
\bar{y}=h(\bar{x})=0, \tag{18}
\end{equation*}
$$

and defining the perturbation

$$
\begin{equation*}
\tilde{y}=y-\bar{y}, \tag{19}
\end{equation*}
$$

we can write the linearized output equation as

$$
\begin{equation*}
\tilde{y}(t)=\frac{\partial h}{\partial x}(\bar{x}, \bar{u}) \tilde{x}(t) . \tag{20}
\end{equation*}
$$

Here, by the definition (2), we have

$$
\frac{\partial h}{\partial x}(x, u)=\left[\begin{array}{ll}
2 x_{2} & 2 x_{1} \tag{21}
\end{array}\right]
$$

and

$$
\frac{\partial h}{\partial x}(\bar{x}, \bar{u})=\left[\begin{array}{ll}
0 & 2 \tag{22}
\end{array}\right] .
$$

Consider the family of polynomials

$$
\begin{equation*}
\mathcal{P}(\lambda)=\left\{\lambda^{3}+\theta_{2} \lambda^{2}+a \lambda+\theta_{0} \mid 2 a \leq \theta_{2} \leq 3 a, a \leq \theta_{0} \leq 4 a\right\} \tag{23}
\end{equation*}
$$

with a a real number.

By Kharitonov's theorem, the set of polynomials (23) is stable if and only if the four polynomials

$$
\begin{align*}
& p_{1}(\lambda)=\lambda^{3}+3 a \lambda^{2}+a \lambda+a, \tag{24}\\
& p_{2}(\lambda)=\lambda^{3}+2 a \lambda^{2}+a \lambda+4 a, \tag{25}\\
& p_{3}(\lambda)=\lambda^{3}+2 a \lambda^{2}+a \lambda+4 a, \tag{26}\\
& p_{4}(\lambda)=\lambda^{3}+3 a \lambda^{2}+a \lambda+a, \tag{27}
\end{align*}
$$

are all stable. It is clear that $p_{1}(\lambda)=p_{4}(\lambda)$ and $p_{2}(\lambda)=p_{3}(\lambda)$, such that stability of only two distinct polynomials has to be determined.

First, stability of $p_{1}(\lambda)=p_{4}(\lambda)$ is studied using the Routh-Hurwitz test. To this end, consider the following table:

Recall that a necessary condition for stability of a polynomial is that all coefficients have the same sign. For the original polynomial p_{1}, this gives that $a>0$. Applying the same reasoning to the polynomial obtained after step 1 , we get $3 a-1>0$, i.e., $a>\frac{1}{3}$. We now have $a>\frac{1}{3}$, which enables the division by a after step 1 as well as division by $3 a-1$ after step 2 . Now, under this condition, it is easily checked that the final polynomial $(3 a-1) \lambda+3 a$ is stable. Thus, we have that $p_{1}(\lambda)=p_{4}(\lambda)$ is stable if and only if

$$
\begin{equation*}
a>\frac{1}{3} . \tag{28}
\end{equation*}
$$

Following the same approach, the Routh-Hurwitz table of $p_{2}(\lambda)=p_{3}(\lambda)$ is given as:

$$
\begin{array}{rccccl}
& \lambda^{3} & \lambda^{2} & \lambda^{1} & \lambda^{0} \\
2 a \times & 1 & 2 a & a & 4 a & \\
1 \times & 2 a & & 4 a & & \\
\cline { 2 - 4 }(a-2) \times & & 4 a^{2} & a(2 a-4) & 8 a^{2} & \text { (result of step 1) } \\
2 a \times & & 2 a & a-2 & 4 a & \text { (after division by 2a) } \\
& & a-2 & & & \\
& & & (a-2)^{2} & 4 a(a-2) & \text { (result of step 2) } \\
& & & a-2 & 4 a & \text { (after division by } 3-a)
\end{array}
$$

As before, the original polynomial $p_{2}(\lambda)=p_{3}(\lambda)$ gives that $a>0$ is necessary for stability, whereas the result of step 2 gives $a>2$. Under the latter condition, it can be shown that the final polynomial $(a-2) \lambda+4 a$ is stable. Hence, $p_{2}(\lambda)=p_{3}(\lambda)$ is stable if and only if

$$
\begin{equation*}
a>2 \tag{29}
\end{equation*}
$$

Combining the results (28) and (29) gives, through Kharitonov's theorem, that the family of polynomials $P(\lambda)$ is stable if and only if

$$
\begin{equation*}
a>2 . \tag{30}
\end{equation*}
$$

Consider the linear system

$$
\dot{x}(t)=\left[\begin{array}{ccc}
-2 & 8 & 1 \tag{31}\\
0 & 1 & 2 \\
0 & -2 & 1
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] u(t), \quad y(t)=\left[\begin{array}{lll}
1 & -2 & 1
\end{array}\right] x(t) .
$$

(a) The unobservable subspace is given as

$$
\operatorname{ker}\left[\begin{array}{c}
C \tag{32}\\
C A \\
C A^{2}
\end{array}\right]=\operatorname{ker}\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 4 & -2 \\
4 & -8 & 4
\end{array}\right] .
$$

As all rows are scaled version of the first row, it is clear that the unobservable subspace has dimension $3-1=2$. A basis is given by the vectors

$$
\left[\begin{array}{l}
2 \tag{33}\\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right],
$$

such that

$$
\mathcal{N}=\operatorname{span}\left\{\left[\begin{array}{l}
2 \tag{34}\\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\right\} .
$$

(b) By definition of the unobservable subspace, we have

$$
\begin{equation*}
y(t)=0, \quad t \geq 0 . \tag{35}
\end{equation*}
$$

Consider the linear system

$$
\begin{equation*}
\dot{x}(t)+A x(t)+B u(t) \tag{36}
\end{equation*}
$$

with state $x(t) \in \mathbb{R}^{3}$, input $u(t) \in \mathbb{R}$, and where

$$
A=\left[\begin{array}{ccc}
-3 & 0 & 0 \tag{37}\\
0 & 3 & -5 \\
0 & 1 & -3
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

(a) Due to the block-diagonal structure of A, its spectrum $\sigma(A)$ is given by

$$
\sigma(A)=\sigma(-3) \cup \sigma\left(\left[\begin{array}{ll}
3 & -5 \tag{38}\\
1 & -3
\end{array}\right]\right)
$$

Computation of the characteristic polynomial of the matrix in the lower right block gives

$$
\operatorname{det}\left(\lambda I-\left[\begin{array}{ll}
3 & -5 \tag{39}\\
1 & -3
\end{array}\right]\right)=\left|\begin{array}{cc}
\lambda-3 & 5 \\
-1 & \lambda+3
\end{array}\right|=(\lambda-3)(\lambda+3)+5=\lambda^{2}-4
$$

after which solving $\lambda^{2}-4=0$ yields

$$
\sigma\left(\left[\begin{array}{ll}
3 & -5 \tag{40}\\
1 & -3
\end{array}\right]\right)=\{-2,2\}
$$

such that the total spectrum is

$$
\begin{equation*}
\sigma(A)=\{-3,-2,2\} . \tag{41}
\end{equation*}
$$

As there exist eigenvalues with positive real part, the system (36) is not (asymptotically) stable.
(b) To verify controllability, compute

$$
\left[\begin{array}{lll}
B & A B & A^{2} B
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{42}\\
1 & -7 & 4 \\
2 & -5 & 8
\end{array}\right]
$$

whose rank is immediately observed to equal 2 . Hence, as the state-space dimension of the system (36) equals 3 , the system is not controllable. Note that this could have been concluded immediately from the block-diagonal structure of A in (37) and the observation that the corresponding entry in B equals zero.
(c) For the system to be stabilizable, all unstable eigenvalues of A need to be controllable. From (a), we recall that $\sigma(A)=\{-3,-2,2\}$, such that 2 is the only unstable eigenvalue.

Denote $\lambda=2$ and consider

$$
\left[\begin{array}{lll}
\lambda I-A & B
\end{array}\right]=\left[\begin{array}{ccc|c}
\lambda+3 & 0 & 0 & 0 \tag{43}\\
0 & \lambda-3 & 5 & 1 \\
0 & -1 & \lambda+3 & 2
\end{array}\right]=\left[\begin{array}{ccc|c}
5 & 0 & 0 & 0 \\
0 & -1 & 5 & 1 \\
0 & -1 & 5 & 2
\end{array}\right]
$$

It is clear that

$$
\begin{equation*}
\operatorname{rank}[\lambda I-A B]=3 \tag{44}
\end{equation*}
$$

which equals the state-space dimension. Thus, the system (36) is stabilizable.
(d) Note that the block-diagonal structure of A and the structure of B in (37) enables us to write

$$
A=\left[\begin{array}{cc}
-3 & 0 \tag{45}\\
0 & \bar{A}
\end{array}\right], \quad B=\left[\begin{array}{c}
0 \\
\bar{B}
\end{array}\right]
$$

with

$$
\bar{A}=\left[\begin{array}{ll}
3-5 \tag{46}\\
1-3
\end{array}\right], \quad \bar{B}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Then, a transformation of the form

$$
T=\left[\begin{array}{cc}
1 & 0 \tag{47}\\
0 & \bar{T}
\end{array}\right]
$$

with \bar{T} nonsingular yields

$$
\begin{align*}
T^{-1} A T & =\left[\begin{array}{ll}
1 & 0 \\
0 & \bar{T}^{-1}
\end{array}\right]\left[\begin{array}{cc}
-3 & 0 \\
0 & \bar{A}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \bar{T}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 0 \\
0 & \bar{T}^{-1} \bar{A} \bar{T}
\end{array}\right], \tag{48}\\
T^{-1} B & =\left[\begin{array}{ll}
1 & 0 \\
0 & \bar{T}^{-1}
\end{array}\right]\left[\begin{array}{c}
0 \\
\bar{B}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\bar{T}^{-1} \bar{B}
\end{array}\right] . \tag{49}
\end{align*}
$$

Now, the problem becomes to find a nonsingular matrix \bar{T} such that

$$
\bar{T}^{-1} \bar{A} \bar{T}=\left[\begin{array}{cc}
0 & 1 \tag{50}\\
-a_{2} & -a_{1}
\end{array}\right], \quad \bar{T}^{-1} \bar{B}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

To do so, compute the characteristic polynomial of \bar{A} in (46) as

$$
\begin{equation*}
\Delta_{\bar{A}}(\lambda)=\operatorname{det}(\lambda I-\bar{A})=\lambda^{2}-4 \tag{51}
\end{equation*}
$$

where the result (39) is recalled. After denoting

$$
\begin{equation*}
a_{1}=0, \quad a_{2}=-4, \tag{52}
\end{equation*}
$$

the characteristic polynomial can be written as

$$
\begin{equation*}
\Delta_{\bar{A}}(\lambda)=\lambda^{2}+a_{1} \lambda+a_{2} . \tag{53}
\end{equation*}
$$

Now, to construct the transformation \bar{T}, consider

$$
\begin{align*}
& q_{2}=\bar{B}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \tag{54}\\
& q_{1}=\bar{A} \bar{B}+a_{1} \bar{B}=\left[\begin{array}{l}
-7 \\
-5
\end{array}\right]+0 \tag{55}
\end{align*}
$$

to form

$$
\bar{T}=\left[\begin{array}{ll}
q_{1} & q_{2}
\end{array}\right]=\left[\begin{array}{ll}
-7 & 1 \tag{56}\\
-5 & 2
\end{array}\right] .
$$

By construction, this matrix satisfies (50) with a_{1} and a_{2} as in (52). This can easily be verified after computing its inverse as

$$
\bar{T}^{-1}=\frac{1}{9}\left[\begin{array}{ll}
-2 & 1 \tag{57}\\
-5 & 7
\end{array}\right] .
$$

(e) Following a similar partitioning as before, we can write

$$
F=\left[\begin{array}{ll}
0 & \bar{F} \tag{58}
\end{array}\right],
$$

with $\bar{F}=\left[\begin{array}{ll}f_{2} & f_{1}\end{array}\right]$.
The matrices $A+B F$ and

$$
\begin{equation*}
T^{-1}(A+B F) T=T^{-1} A T+T^{-1} B F T \tag{59}
\end{equation*}
$$

have the same eigenvalues by similarity transformation. Specifically, using the block-diagonal forms (46) and (58), we obtain

$$
T^{-1}(A+B F) T=\left[\begin{array}{cc}
-3 & 0 \tag{60}\\
0 & \bar{T}^{-1} \bar{A} \bar{T}+\bar{T}^{-1} \bar{B} \bar{F} \bar{T}
\end{array}\right] .
$$

Note that this feedback leaves the eigenvalue -3 untouched. This is no problem, as -3 is within the desired spectrum of the closed-loop system. Thus, what remains is to find \bar{F} such that

$$
\begin{equation*}
\sigma\left(\bar{T}^{-1} \bar{A} \bar{T}+\bar{T}^{-1} \bar{B} \bar{F} \bar{T}\right)=\{-1,-1\} \tag{61}
\end{equation*}
$$

To this end, denote

$$
\tilde{F}=\left[\begin{array}{ll}
\tilde{f}_{2} & \tilde{f}_{1} \tag{62}
\end{array}\right]=\bar{F} \bar{T}
$$

and compute

$$
\bar{T}^{-1} \bar{A} \bar{T}+\bar{T}^{-1} \bar{B} \bar{F} \bar{T}=\left[\begin{array}{cc}
0 & 1 \tag{63}\\
\tilde{f}_{2}-a_{2} & \tilde{f}_{1}-a_{1}
\end{array}\right] .
$$

Due to its companion form, the characteristic equation of the matrix can immediately be given as

$$
\begin{equation*}
\Delta_{\bar{T}^{-1}(\bar{A}+\bar{B} \bar{F}) \bar{T}}(\lambda)=\lambda^{2}+\left(a_{1}-\tilde{f}_{1}\right) \lambda+\left(a_{2}-\tilde{f}_{2}\right) \tag{64}
\end{equation*}
$$

As we would like the closed-loop system matrix to have eigenvalues at $-1,-1$, the desired characteristic polynomial is

$$
\begin{equation*}
p(\lambda)=(\lambda+1)^{2}=\lambda^{2}+2 \lambda+1 \tag{65}
\end{equation*}
$$

After equating (64) and (65) and the substitution of the values for a_{1} and a_{2} in (52), we find

$$
\begin{align*}
& \tilde{f}_{1}=a_{1}-2=0-2=-2, \tag{66}\\
& \tilde{f}_{2}=a_{2}-1=-4-1=-5 . \tag{67}
\end{align*}
$$

To find the feedback matrix \bar{F} (in the original coordinates), compute

$$
\bar{F}=\tilde{F} \bar{T}^{-1}=\frac{1}{9}\left[\begin{array}{ll}
-5 & -2
\end{array}\right]\left[\begin{array}{ll}
-2 & 1 \tag{68}\\
-5 & 7
\end{array}\right]=\frac{1}{9}\left[\begin{array}{ll}
20 & -19
\end{array}\right]
$$

such that the full feedback matrix $F=[0 \bar{F}]$ is given as

$$
F=\frac{1}{9}\left[\begin{array}{lll}
0 & 20 & -19 \tag{69}
\end{array}\right] .
$$

Consider the linear system

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t) \tag{70}
\end{equation*}
$$

with state $x(t) \in \mathbb{R}^{n}$ and input $u(t) \in \mathbb{R}^{m}$ for $m=1$.
Let $w_{1} \neq 0$ and $w_{2} \neq 0$ be two linearly independent eigenvalues of A^{T} for the eigenvalue $\lambda \in \sigma(A)$ (recall that $\sigma(A)=\sigma\left(A^{\mathrm{T}}\right)$). Equivalently, they are left eigenvectors for A, i.e.,

$$
\begin{equation*}
w_{1}^{\mathrm{T}} A=\lambda w_{1}^{\mathrm{T}}, \quad w_{2}^{\mathrm{T}} A=\lambda w_{2}^{\mathrm{T}} \tag{71}
\end{equation*}
$$

Now, let

$$
\begin{equation*}
w=\alpha_{1} w_{1}+\alpha_{2} w_{2}, \tag{72}
\end{equation*}
$$

with $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ be a linear combination of the left eigenvectors. Then,

$$
w^{\mathrm{T}}\left[\begin{array}{ll}
A-\lambda I B \tag{73}
\end{array}\right]=\left[w^{\mathrm{T}}(A-\lambda I) w^{\mathrm{T}} B\right] .
$$

Note that

$$
\begin{equation*}
w^{\mathrm{T}}(A-\lambda I)=0 \tag{74}
\end{equation*}
$$

due to (71). Moreover,

$$
\begin{equation*}
w^{\mathrm{T}} B=\alpha_{1}\left(w_{1}^{\mathrm{T}} B\right)+\alpha_{2}\left(w_{2}^{\mathrm{T}} B\right), \tag{75}
\end{equation*}
$$

where it is noted that $w_{1}^{\mathrm{T}} B$ and $w_{2}^{\mathrm{T}} B$ are scalars as $m=1$. Thus, there exists α_{1} and α_{2} such that $w^{\mathrm{T}} B=0$. In this case,

$$
\begin{equation*}
w^{\mathrm{T}}[A-\lambda I B]=0, \tag{76}
\end{equation*}
$$

implying that the matrix

$$
\begin{equation*}
[A-\lambda I B] \tag{77}
\end{equation*}
$$

does not have full row rank (i.e., does not have rank n) and the system (70) is not controllable as a result of the Hautus test.
(10 points free)

